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The partition function of the van der Waals gas is represented by a functional 
integral which is evaluated by summing the value of the integrand over its 
absolute and all of its secondary maxima. This leads to a one-to-one corre- 
spondence with the Ising model with nearest-neighbor interactions only. 
Whereas the classical behavior of the van der Waals gas is due to the absolute 
maximum in function space, the nonclassical behavior is shown to derive 
from the combined contribution of all the secondary maxima. The relation 
of this work to inverse range expansions and to the droplet model of con- 
densation is discussed. 

KEY W O R D S :  Critical behavior; van der Waals gas; droplet model of 
condensation; Ising model; functional integration. 

1. I N T R O D U C T I O N  

In the last decade much effort has been directed to the study of  the van der 
Waals gas. This is a system of classical particles which interact with a pair 
interaction which is the sum of  a hard-core repulsion and a long-range 
attraction: 

V(r) = vho(r) + Vlr(r) ( la)  

vile(r) = ~ o  if 1 r l > ~  ( l b )  ~+ ov if I r l  < ~  
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Usually the attractive part of the interaction has the form (D is the dimension) 

Vlr(r) ---- --yDW(~'r) (lc) 

The range of this interaction is of the order of y-z, and one is interested in 
the case in which the range is large compared to the diameter of the hard 
core, but finite: 

~ y-~ < oo (2) 

Lebowitz and Penrose ~1) proved rigorously that the equation of state of the 
van der Waals gas, in the limit 7, $ 0, is the van der Waals equation of state, 
including the Maxwell construction (this is the "classical limit" of the theory). 
This result, which had previously been obtained heuristically by van 
Kampen, ~2) motivated attempts by several authors to study the case of small 
7, by a type of perturbation theory in which the grand canonical pressure of the 
system is developed in a power series in ~, (see Ref. 3 for a review of the 
literature). As a result of the perturbation-theoretic origin of these ~, expan- 
sions, the critical behavior which results from them is of the same type as the 
critical behavior predicted from the Van der Waals equation of state: The 
critical exponents still have their classical values. This conclusion is almost 
certainly incorrect. Consequently one expects that, whereas the 7, expansion is 
probably an excellent approximation to the true pressure outside of the 
critical region, terms in the pressure which are nonanalytic in 7' must become 
dominant when the temperature approaches the critical temperature, and 
that these nonanalytic terms lead to nonclassical critical exponents. It is the 
aim of the present paper to explore this possibility in a somewhat heuristic 
fashion. 

2. F U N C T I O N A L  I N T E G R A L  R E P R E S E N T A T I O N  

It can be shown ~4,5) that the grand canonical partition function of the 
van der Waals gas can be represented by a functional integral of the form 

-k ~ f~ phe(z exp/34) d"r I d[4(r)] (3) 

In this expression Z denotes the grand canonical partition function; z is the 
fugacity (with a shifted origin for the chemical potential); fl-1 is the product 
of the absolute temperature and Boltzmann's constant; s is the volume of the 
system. The kernel Vlr(r -- r') is supposed to be negative-definite; its inverse 
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is denoted by V~r~(r -- r'). The pressure of the hard-core system is denoted 
by phc(z). Finally, the normalization is 

J f  = f exp 1�89 f~ dDr f~ dDr ' r V ~ l ( r -  r ' ) r  d[r (4) 

The integrations in (3) and (4) are to be extended over real random functions, 
defined on f2. For a definition of the process of functional integration and 
its extension to nondefinite kernels and complex random functions, see 
Ref. 5. It is shown there that the representation (3) of the partition function 
is not an exact result, but a good approximation provided the range of the 
attraction is very large compared to the diameter of the hard core. 

For calculational convenience we shall assume a specific form for the 
function W which occurs in (lc): 

W(0) = (2~r) -D f {[exp(--ik �9 0)]/(qlk 2 + q~)} dDk (s) 

Here qz and q2 are arbitrary positive constants. The function W has 
now the form of a Kac potential for D = 1 and the form of a Yukawa 
potential for D = 3. The analysis of this paper can be extended to more 
general forms of the potential; this would not lead to qualitatively different 
results. Substituting (5) into (lc) gives for the inverse of Vlr the explicit 
form 

V~:(r) = [(q:/y~)A -- q2] 8(r) (6) 

where A denotes the D-dimensional Laplacian and ~(r) the D-dimensional 
Dirac function. The reason for the specific form of W now becomes obvious: 
Upon substitution of (6) into (3) and (4) one finds the Landau-Ginzburg form 

Z(z,/3, D) = ~z'-z f exp t-- f~ [(/3ql/272'(Vr -t- A@)] dDr l d[r (7) 

= f exp 1- [@d2,2)(vr + �89162 dnr I die(r)] (8) 

A(r = �89162 --/3phc(z exp/3r (9) 

A functional integral of this type has been studied by Langer,16) who obtained 
the analytic continuation of the grand canonical pressure p(z) from the gas 
branch (z < z0), around the condensation point Zo, into the metastable 
branch (z > Zo). A similar functional integral forms the starting point of 
Wilson's theory of critical behavior/7) 

Before we close this section we want to show how the van der Waals 
equation of state appears. The absolute maximum of the integrand of (7) 
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occurs for a field q~ which is constant in space and equal to the absolute 
minimum of the function A(r it must be a solution of 

q2~ = phe(z exp ]3q~) (10) 

From the general shape of the density Phe(Z) of the hard-core system one 
infers that there exists a temperature Tw such that (10) has only one solution 
for T > Tw but three solutions ~ < 60 < ~z for T < Tw. Here ~g and ~ are 
minima of A(r they are separated by a barrier with maximum at ~0- 
Identification of the functional integral (7) with the absolute maximum of the 
integrand gives 

tip(z, fi) = max[--A@g), --A(~3] (11) 

The two minima qgg(z,/3) and q~(z, 13) are functions of z and ft. The minimum 
~g will be the absolute minimum of A(r provided z < z0(fi); q~ will be the 
absolute minimum for z > zo(fi). Clearly Tw plays the role of the critical 
temperature and z 0 is the point where the phase transition occurs if T < Tw �9 
That (11) is really the grand canonical form of the van der Waals equation of 
state can be seen by first calculating the density p(z, 8) from (11) and then 
eliminating z and ~. One finds in this way 

p(/3, p) = Phe(P) -- (1/2q2) P~ (12) 

3. C O R R E S P O N D E N C E  W I T H  N E A R E S T - N E I G H B O R  
I S I N G  M O D E L  

Whereas in the previous section only the absolute maximum of the 
integrand of (7) was considered, we shall now also take the secondary maxima 
into account. They are all the solutions of the Euler-Lagrange equation 

(13ql/y ~) A~ = (~/0~) A(~) ( 1 3 )  

which obey the appropriate boundary conditions on the surface of ~ .  The 
solutions ~(r) of (13) will in general be space-dependent. Consider a given 
~(r) and draw the surfaces ~(r) = const. For a given point r 0 E ~ ,  Eq. (13) 
can be transformed to a local set of orthogonal coordinates, two of which are 
tangential to the surface ~(r) = ~(r0) whereas the third one is orthogonal to 
this surface. I f  the component of r -- r0 along the third local coordinate 
axis is denoted by ~, then the solution of (13) can be replaced, in a vicinity of 
r0, by the solution of the equation 

/3qz d ~ - ~  = (14) 
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This is the equation of  motion of a classical particle with mass fiqz?,-~ moving 
along the r axis in time a and in a potential --A(q~). From (9) and the quali- 
tative properties of the hard-core reference system it can be verified that the 
potential --A@) looks as follows. For  temperatures below Tw and a value 
of z slightly below Zo(fi) the potential shows two maxima, at qgg and r 
separated by a minimum at r For  large positive or negative values of  
the potential --A(q~) will decrease to -- oe. In this potential the only bounded 
motions are motions in which the particle either lies on top of  the "gas" or 
"liquid" hill, or oscillates between a value of q~ slightly larger then r and 
a value of q~ slightly smaller then q~z. The particle remains for an extended 
period of  time close to the top of either of the two hills. The "time" I to go 
from the "gas" to the "liquid" phase is of the order of 

(dr 

Using (14), we find explicitly 

I c (15) ~ - - ;  c=-  
{(21fiqO[A(Oo) - -  A(~g.~)]}z/2 

In this equation Cg,~ means q~ if z < z 0 and ~g if z > z 0 . The qualitative 
conclusion of this paragraph is that the fields r which are secondary 
maxima of  the integrand of (7) are constant nearly everywhere, equal to 
r in a "gas" region and equal to r in a "liquid" region. A "gas" region is 
separated from a "liquid" region by a transition layer of  width/.  The linear 
dimensions of the regions are very large compared to the width of  the 
transition layer provided z is equal to or very near to the transition value 
Zo(fi)~ Obviously this picture makes sense only for temperatures below the 
mean-field critical temperature Tw. 

Now, divide the volume .(2 into cubical cells of volume l D and attach a 
spin a~ ----- ~ 1 to cell number i. For  any secondary maximum q~(r) one can 
determine the space average of  q~(r) over cell i; according to the previous 
remarks, this average will be either q~z (in which case one defines ~i = § 1) or 
Cg (in which case ~i = -- 1). It is clear that a cell with ~ = + 1 will contribute 
a term --A(q;~) l D to the exponential in the integrand in (7); whereas a cell 
with cr i = --1 will contribute a term --A(q~o)l v. If, however, a pair of 
neighboring cells carries spins with opposite signs, it is erroneous to attach 
weights according to these rules. This error is corrected for by adding a term 

+ t~ --  " J+ F Pql ( ? + l -1 _~ 12), 2 k d~ ] 
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each time such a pair occurs. Substituting the solution of (14) here, we find 
explicitly a term 

--(c'/c) 1D; e' = (2flq~) ~/2 i ,  [A(~) -- A(~o,z)] z/2 dqg (16) 
~ep g 

for each pair of neighboring cells which carry opposite spins. 
Summing the values of the integrand of  (7) over all secondary maxima 

thus results in the approximation 

l 1 + o , .  . I Z(z, ti, X2) = ~ e x p  - - I D ~ ( ~ - - A ~ +  A ~ ) _ I D C ~ ,  l--croci 
{'~i} C i , j  2 

(17) 

where A~ ~ A(qg~) and A, --= A(q~o). The prime on the third summation sign 
denotes a sum over pairs of nearest neighbors only. Clearly, two approxi- 
mations were made in writing down this expression. The interfaces between 
the "gas" and "liquid" regions are approximated by the faces of  the elemen- 
tary cells in which the system is divided. Second, by summing all the cr~ 
independently over ~ 1 one actually sums the value of the integrand of (7) 
over a class of points in function space which is larger than the class of  the 
secondary maxima. The correspondence with the Ising model is now obvious. 
If  ~D denotes the coordination number of the lattice (~1 = 2, ~2 = 4, ~3 = 6), 
and/(t i , r  timH) denotes the Helmholtz free energy per lattice point of  the 
nearest-neighbor Ising model, 

--ti /(t iJ,  tirnH) = luim ( l /N)In  ~, exp lfl mH . Z cr~ q- �89 ~" cricr, l 
{at} i, 

(18) 

then the grand canonical pressure of the van der Waals gas is found to be 

tip(z, ti) = --~o~D(c'/c ) -- �89 + A~) -- l-Dtif((c'/e) l D, �89 -- A~) l D) (19) 

Let us close this section with the calculation of a few properties of the 
inclusions. The average total volume occupied by "liquid", (f2z), is found 
from (17) as 

�9 2 ~A~ ~A~ 

The total volume fractions filled with "liquid" and "gas" are thus given by 

Xg ~ (f2g)/f2 = --~tip/OAg (20b) 
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The average total surface of the interface (S) is found in the same way: 

i,j 2 a(l D c'/c) 

This quantity will later be used for an order-of-magnitude estimation of the 
linear dimensions of the inclusions on the diameter of the coexistence curve. 

4. TESTS 

The approximation method which was discussed in the previous section 
can be applied to the two cases for which the van der Waals gas can be solved 
rigorously: the one-dimensional system for arbitrary 7 and the multidimen- 
sional system for y $ 0. 

Substitution of the solution of the one-dimensional Ising model in an 
external magnetic field into (19) gives for T < Tw 

1 1 
t I (At -- &)  tip(z, fi) = -- ~ (Ao + At) + ] In cosh 

In the region near the transition point one has [At -- Ag [ l ~  1 and one 
finds 

tip(z, [3) = --�89 + At) 4:- �89 -- A~) 2 + (4/I 3) exp(--2c'/7)] 1/2 (23) 

Comparing this with the exact solution of the model of Kac et aL, (8) one 
finds that (23) is in qualitative agreement with the rigorous result (the solution 
of this model in the grand canonical ensemble is discussed in Refs. 4, 5; also 
compare related work by Helfand (9) and van Kampen(l~ As a matter of 
fact, the correspondence between the one-dimensional Ising model and the 
one-dimensional van der Waals gas holds even in a part of the complex 
z plane which is much larger then a small vicinity of the point zo(fi), as can be 
seen by comparing the Yang-Lee distributions of zeros for the two systems, m) 

The result of Lebowitz and Penrose can be derived from (19) as follows: 
The limit ~, $ 0 in the van der Waals gas is, according to (18) and (19), the 
limit T ,L 0 in the corresponding Ising model. At the absolute zero of tem- 
perature all the spins in the Ising model will point in the direction of the 
magnetic field: 

l im/([3J,  f imH) = --m [ HI  --  �88 
T4,O 

Substitution into (19) gives 

lim [3p(z, [3) = --�89 + As) + �89 I A~ -- As [ = max[--A, --At] (24) 
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which, according to Section 2, leads to the van der Waals equation of 
state (12). 

5. T H E  T W O - D I M E N S I O N A L  V A N  DER W A A L S  GAS 

In two dimensions an exact solution is available in the point where 
A~ = Az; that is, in the transition point. Substituting the well-known 
expression S for the field-free two-dimensional Ising model into (19), one 
obtains 

[1 + \ 72 11 
flp(zo , fi) = --Ag,~ + - ~  In exp [--2 cc' "~] 

<oos<o,+ 
cosh2( cc'/72) 

(25) 
The first term on the right-hand side derives from the absolute maximum in 
function space; the two remaining terms represent the total contribution of 
all the secondary maxima. Expanding the logarithms in these terms, one 
verifies that they contribute nonanalytic terms of the order 

(72/c 2 ) e x p ( - - c c ' / y  2) (26) 

to the pressure. The nonanalytic terms will in general be extremely small, 
indicating the validity of the 7 expansion, unless the temperature is in the 
region where 

c(T)  c ' (T)  = O(y 2) (27) 

In this temperature region the second and third terms in (25) become equally 
important as the first and actually cause a shift in the critical temperature from 
the mean-field value Tw down to a new critical temperature To, which is 
the temperature where the integral in (25) has its only singularity: 

sinh[c(T~) c'(T~)I~ ~] ~- 1 --+ c(To) c'(T~) = y~ ln(1 + ~/2) (28) 

The critical behavior is thus entirely due to nonanalytic terms, which are not 
contained in the ~, expansion. 

The total length of the "gas-liquid" interface per unit volume is found by 
substituting (25) into (21): 

S _ 2 y exp( - -2cc ' /72)  + ), [ 1 , - - 2  sinh2(cc'/Y2) -] ] 1 
s'2 c 1 + exp(- -2cc ' /72)  c Lcosh(cc/72) cosh3(cc,/72) 87r ~ 

fl '~ ~" c ~  ~ + c ~  ~~ 
• dc~ de~ 1 - -  [sinh(cc'172)/cosh2(cc'/r2)](cos oJ1 + cos ~o~) 

(29) 

2 The simplest method of solution is given in Ref. 12. 
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This quantity vanishes in the limit Y J, 0, indicating that in this limit only 
infinitely large inclusions occur. For  finite values of  y, S/X2 is of  order 
(y/e) exp(- -  ec'/yz). 

The expression (29) holds at the transition point z 0 , where Ag = A~. 
A glance at (17) shows that at this point there is strict invariance for the 
interchange of  "gas" and "liquid". Therefore, on the average, half of  the 
total volume $2 must be "gas";  the other half must be "liquid". I f  we assume 
that for an estimate of  the order of  magnitude of the linear dimension of the 
inclusions "gas"  and "liquid" regions are divided in a chessboard-like 
pattern of  squares with a surface /12, then we find S/s = 2/ l l .  The linear 
dimension of the inclusions can thus be estimated to be of  order 

/1 ~ (2c/y) e x p (+ c c ' / y  2) (30) 

This is a very large quantity, with the exception of the region (27). i f  the 
temperature is raised, /1 decreases; at Tc the second term on the right-hand 
side of  (29) vanishes and one finds 

ll/I = 4 + 2~/2 = 6.8 (at To) (31) 

Thus, even at T~ the size of  the inclusions is still fairly large compared to the 
width of  the interface. 

The considerations of  the preceding two paragraphs concerned the 
transition point z o . This point is the grand canonical image of the line in the 
(p, T) plane where the "gas"  and "liquid" volume fractions both equal one- 
half. In order to study the boundaries of  the coexistence region, one has to 
assume z :/= zo and one has to take the limit in which z tends to Zo from a given 
side. This amounts to calculating the spontaneous magnetization of  the 
two-dimensional Ising model. Substituting (19) into (20) and using the 
well-known formula for the spontaneous magnetization of the Ising model, a 
one finds for the liquid boundary of the coexistence region the volume 
fractions 

x ,  �89 - �89 1 -1 _ x ) ] , } . ~  ---- - -  [~(X (32a) 

x~ = ~- + ~{1 - -  [�89 -1 - -  X)]*} 1/a (32b) 

and for the gas boundary of  the coexistence region 

x~ ----- �89 + �89 - -  [�89 -1 --  X)]'} 1/s (33a) 

xz : �89 - -  �89 - -  [�89 -1 - -  X)]a} 1/8 (33b) 

where 

X : -  tanh(cc' /2Y 2) 

3 The simplest method of solution is given in Ref. 13. 

(34)  

82z]713-3 
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This means that the pure liquid phase, that is, the phase which corresponds 
to the liquid boundary of the coexistence region, contains a small fraction of 
"gas" and a large fraction of "liquid". An analogous statement holds true 
for the pure gas phase. The volume fractions are easily found to be 

x~ ~ exp(--4cc'/y2), xl ~ 1 -- exp(--4cc'/y2), for the liquid 
(35a) 

x~ ~-~ 1 -- exp(--4cc'/y'~), xt ~ exp(--4cc'/72), for the gas 
(35b) 

The picture which arises here for the thermodynamic liquid phase is a back- 
ground of "liquid" in which "gas" bubbles float around, inside which one 
finds some "liquid" droplets, inside which, etc. A similar picture exists for the 
thermodynamic gas phase. 

From the correspondence with the Ising model one expects that the 
critical exponents of the van der Waals gas will in general be identical to 
those of the nearest-neighbor Ising model. As an illustration we shall consider 
the exponent/3. The number N of particles in the system follows from (7) by 
differentiation: 

N(z) = 0(In Z)/~(ln z ) =  ( f ~  phe(z exp/3r d~  (36) 

where phe(z) denotes the density of the hard-core system, and where the 
average is taken over the weight functional 

Z -1 exp l - - f~  [(fiql/2)'~)(Vr A(~)] d~ I (37) 

For a secondary maximum of this weight functional, characterized by a set 
of spins, the integral in (36) equals f2~p o -k O~p~, where Po ~ phe(z exp/3r 
and pt == phe( z exp/3~). This gives for the density in the present approxi- 
mation 

p(z , /3)  = xgp~ + x~m (38) 

On the boundary of the coexistence region in (O, T) space the functions xg and 
xz have the values (32) and (33). This gives for the gas boundary of the 
coexistence region 

p ( ~ ) ( T )  = (~ + ~(1 - [~(x -1 - x ) p )  - ~ )  e~ 

4- (�89 - -  �89 - -  [�89 -z  - -  X)14} l /s)  O~ (39a)  

and for the liquid boundary 

o(~q~d)(r) = (~ - -~{1 [�89 -~ - x ) ? } ' 9  Pg 

4- (�89 -F �89 -- [�89 -~ -- X)]'} t/s) pz (39b) 
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The width of the coexistence region in (p, T) space is, accordingly, 

] - - 1  _ _  pl]iquid)(T) -- p(gas)(r) = {1 -- [~ (X X)14}l/S(p~ pg) (40) 

In the vicinity of Tc [this is the temperature where x(Tc) = ~ / 2 -  I] this 
quantity behaves as (Tc -- T) 1/8, giving/3 = 1. 

The diameter of the coexistence region is the line 

~l[P(g~s)(T) @ p(liCluid)(T)] = �89 @ Pz) (41) 

versus T. In the vicinity of Tc both pg(T) and pt(T) are analytic functions of  7.. 
Accordingly, no singularity is found in the diameter of the coexistence region 
at the critical point, in the present approximation. 

6. C O N C L U D I N G  R E M A R K S  

In the present approximation the van der Waals gas can be brought into 
a one-to-one correspondence with the nearest-neighbor Ising model. The 
critical temperature was found to be situated slightly below the mean-field 
critical temperature Tw �9 The difference Tw -- Tc is O(V 2) in two dimensions 
and O(~ 3) in three. 

Whereas the one-dimensional system exhibits a phase transition only for 
), ,~ 0, the two- and three-dimensional systems condense for finite 7. 

The main aim of  this paper was to show that, if T approaches the mean- 
field critical temperature Tw within an amount of order ~/2 (for D = 2), the 
combined effect of the many secondary maxima takes over from the absolute 
maximum and causes a nonclassical type of critical behavior. Outside of  the 
critical region the nonanalytic terms, which were found to be of  order 
(~,2/c2) exp(--cc' /~ 2) in two dimensions, are extremely small, showing that 
here the ~ expansion will be an excellent approximation. 

Kac and Thompson (14) (see also Thompson et aL (15)) have presented a 
method in which the most divergent terms in the ), expansion are summed. 
The resummed series exhibits a new critical temperature which is shifted 
(for D = 2) by an amount of  order y In (1/},) downward from Tw. They 
suggest that iteration of  their procedure could produce the correct critical 
point. The present analysis suggests that the nonclassical behavior is entirely 
due to the combined effect of  the secondary maxima and cannot be extracted 
from a study of the functional integral in a vicinity of the absolute maximum 
only. 

We would finally like to remark that the method employed here can be 
!ooked upon as a derivation of  a symmetrized droplet model of conden- 
sation (see Fisher (16)) from the principles of statistical mechanics. The linear 
dimensions of  the droplets and bubbles was found to be of order 
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(el),) exp(+ec ' /72)  on the d iameter  o f  the coexistence region.  The  present  
mode l  for  the van der  Waa l s  gas is symmetr ic  in the roles o f  d rople t s  and  
bubbles  and  leads to a descr ip t ion  o f  a pure  t he rmodyna mic  phase  as a lways 
conta in ing  a finite vo lume f rac t ion  o f  the o ther  t h e r m o d y n a m i c  phase,  thereby  
leading to a h ierarchy o f  drople ts  inside bubbles  inside droplets ,  etc. 
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